Vector Actions

Cosine Similarity

#Calculate the Cosine similarity score between 2 vectors.
# return list[float] floats betweeen  0 and 1
# vectora :list[list[float]]] | list[float]
# vectorb : list[list[float]]] | list[float]
similarity = vector.cosine_sim(vectora, vectorb);

Dot Product

# Calculate the dot product between 2 vectors.
# return float betweeen  0 and 1
# vectora :list
# vectorb : list

dot_product = vector.dot_product(vectora,vectorb);

Centroid

# Calculate the centroid of the given list of vectors.
# list of vectors
# returns [centroid vectors , cluster tightness]

centroid  = vector.get_centroid(vectors);

Softmax

# calculate the softmax value
# returns list
# vectors : dictionary
values = vectors.softmax(vectors);

Dimensionality Reduction

// fit the model with the given vector. save this model(str) to a file for the future usage

data = [[1,2,3],[4,5,6],[7,8,9]];
model = vector.dim_reduce_fit(data, 2);

// transform the given vectors with the given model

new_data = [[3,2,3],[4,9,6]];
reduced_data = vector.dim_reduce_apply(new_data, model);

Vector Sort by Key

args: data: dict (*req), reverse: _empty (False), key_pos: _empty (None)

Param 1 - List of items Param 2 - if Reverse Param 3 (Optional) - Index of the key to be used for sorting if param 1 is a list of tuples. Deprecated